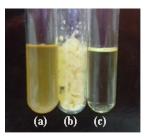
# Trabalhando ponto de fusão de óleos e gorduras a partir de uma metodologia simples e produtos regionais da Amazônia

\*Viviane Fagundes Pacheco¹ (PQ), Daiana Pinheiro da Silva². vfpacheco@uea.edu.br

Centro de Estudos Superiores de Tefé – CEST/UEA, Estrada do Bexiga n°1085, Bairro Jerusalém, Tefé- AM, CEP:69470-000

Palavras-Chave: ensino de química, experimentação, lipídeos

## Introdução


Nas experiências para determinação do ponto de fusão normalmente é empregado tubo de Thiele. A maior parte das escolas do Brasil não possuem tal vidraria, fato que pode ser contornado pelo desenvolvimento de metodologias utilizando materiais simples e de fácil aquisição e de preferência com materiais que tenham relevância social e econômica para os alunos.

O objetivo foi elaborar uma metodologia experimental alternativa para determinação de ponto de fusão de óleos utilizando materiais baratos e regionais para escolas do estado do Amazonas.

#### Metodologia

**Materiais necessários:**10 mL de óleo de castanha; 10 mL de óleo de andiroba;10 g de manteiga de cacau; 30 g de sal de cozinha (Cloreto de sódio); 12 tubos de ensaio; 3 termômetros; 01 colher de sopa; 1 copo de isopor® de 300 mL; 2 copos de vidro de 300 mL; água.

A Figura 1 mostra o aspecto físico das amostras lipídicas utilizadas à temperatura ambiente.



**Figura 1.** Amostras lipídicas: (a) óleo de andiroba; (b) manteiga de cacau; (c) óleo de castanha.

#### **Procedimentos:**

Adicione cada material lipídico em um respectivo tubo de ensaio e reserve-os em uma estante para tubos de ensaio;

Prepare três sistemas nas seguintes temperaturas (T):

 $T_1$ : -2°C (150 mL de solução salina a 10% m/m com gelo),  $T_2$ : 35°C e,  $T_3$ : 45°C.

Posteriormente introduza o termômetro em cada tubo de ensaio contendo a amostra e os coloque nos sistemas na seguinte ordem: T<sub>1</sub>, T<sub>2</sub> e T<sub>3</sub> até que haja fusão do material.

NOTA: Os sistemas foram desenvolvidos de forma a contemplar a fusão de cada uma das amostras.

# Resultados e Discussão

A manteiga de cacau apresenta maior ponto de fusão (30-36°C) dentre os materiais estudados pois possui maior teor de ácidos graxos saturados (palmítico e esteárico) e consequentemente as interações de van de Walls atuaram com maior intensidade. O óleo da castanha possui menor ponto de fusão (-4°C) que o da andiroba (22-28°C) que está relacionado ao fato daquele ter maior percentual de ácidos graxos insaturados (oléico e linoleico) (Tabela 1)¹.

Tabela 1. Comparativo de porcentagem de ácidos graxos presente nos materiais estudados<sup>2</sup>

| Ácido Graxo<br>(%)   | Óleo de<br>Andiroba | Óleo de<br>Castanha | Manteiga de<br>Cacau |
|----------------------|---------------------|---------------------|----------------------|
| Palmítico<br>(16:00) | 28,03               | 18,13               | 24-29                |
| Esteárico<br>(18:00) | 8,69                | 13,17               | 32-37                |
| Oléico<br>(18:01)    | 49,08               | 47,02               | 31-37                |
| Linoléico<br>(18:02) | 11,03               | 15,20               | 0,2-0,5              |

### Conclusões

A metodologia desenvolvida mostrou-se capaz de substituir a amplamente utilizada.

<sup>&</sup>lt;sup>1</sup> MCMURRY, J. **Química Orgânica**. Vol2. 7. ed. Cengage Learning, 2011.

Plantas da Amazônia para produção cosmética:
60 espécies do extrativismo florestal não madeireiro.
Disponível em:<a href="http://www.lookfordiagnosis.com">http://www.lookfordiagnosis.com</a>. Acesso em: